

ESTABLISHING A COMPUTERIZED TOOL FOR CLINICAL EVALUATION OF COGNITIVE FUNCTION IN CHILDREN WITH NEW-ONSET EPILEPSY

Supported by HRSA Project Access (Beem); Epilepsy Foundation of Western/Central Pennsylvania; NIMH 2R25 MH054318 (Triplett)

INTRODUCTION

 Children with epilepsy are at risk for compromised cognitive outcomes.

•Traditional neuropsychological testing is time-consuming and costly to perform longitudinally.

 We investigated the ability of a computerized cognitive testing battery to detect differences before and after medication initiation.

METHODS

Patients

- Recruited from outpatient neurology clinic at the Children's **Hospital of Pittsburgh**
- Aged 8-17 years with a new epilepsy diagnosis
- **Epilepsy medication-naïve at time of enrollment**
- No history of developmental delay
- English as a first language
- Age-appropriate reading and computer skills

Behavioral Assessments

Parents or guardians completed:

- Strengths and Difficulties Questionnaire (SDQ)
- Hague Side Effects Scale (HASES)

Cognitive Testing

- CNS Vital Signs 30 minute computerized battery
 - 7 tasks: Verbal Memory Test (VBM) Visual Memory Test (VIM)

Finger Tapping Test (FTT) Symbol Digit Coding Test (SDC) Stroop Test (ST)

Shifting Attention Test (SAT) Continuous Performance Test (CPT)

Composite Tests Domain Score Neurocognition Index /BM, VIM, FTT, SDC, ST, SAT, CPT VBM, VIM **Composite Memory** VBM **Verbal Memory** Visual Memory VIM FTT, SDC **Psychomotor Speed Reaction Time** ST Processing Speed SDC SAT, ST **Cognitive Flexibility** CPT, SAT, ST **Complex Attention Executive Function** SAT

- Baseline testing completed before anticonvulsant therapy initiation
- Follow-up testing completed 2-12 months following baseline testing

Symbol Digit Coding Test

Type the number that matches the highlighted symbol.

Shifting Attention Test

M. Asato^{1,2}, R. Triplett³, J. Pardini⁴, P. Beem⁵, D. Magovern¹ ¹Departments of Pediatrics and ²Psychiatry, University of Pittsburgh; ³ University of Pittsburgh School of Medicine; ⁴ Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA; ⁵ Epilepsy Foundation of Western/Central Pennsylvania.

RESULTS **Patient Characteristics**

Total enrolled (N = 29)

Mean age (SD)	Gend	er	Seizure ty	Lifetime seizure total		
12.5 (2.2)	Male	15	Partial	6	< 5	18
	Female	14	Generalized	23	5 – 10	2
					> 10	9

Cognitive Testing Baseline Domain Scores (N = 29)

	Maan	CD
	Mean	-30
Neurocognition Index	89.1	16.2
Composite Memory	93.1	17.8
Verbal Memory	95.2	19.9
Visual Memory	93.8	13.6
Psychomotor Speed	89.9	18.4
Reaction Time	89.9	20.8
Processing Speed	94.1	16.3
Cognitive Flexibility	89	19.8
Complex Attention	83.7	29.8
Executive Function	90.9	18 1

CNS VS raw scores are normalized and standardized to scores from age-matched controls (ages 8 – 90). Scaled scores have a mean = 100, standard deviation = 15.

Mean time to ronow-up. 4 months										
Mean age (SD)	Gende	er	Seizure type		AED		Lifetime seizure total			
12.1 (1.8)	Male	8	Partial	2	LEV	8	< 5	9		
	Female	6	Generalized	12	OXC	2	5 – 10	2		
					LTG	2	> 10	3		
					VPA	1				
					ZNS	1				
					TPM	1				
					KLON	1				

Follow-up Domain Scores (n = 14)

	Base	eline	Follow-up			
						p-value (2-
	Mean	SD	Mean	SD	t-score	tailed)
Neurocognition Index	89.8	14.5	88	21.5	0.42	0.68
Composite Memory	92.9	14.1	99.2	15.7	-2.43	0.03*
Verbal Memory	93.4	18.9	96	15.9	-0.71	0.49
Visual Memory	94.8	10	101.8	14.4	-2.73	0.02*
Psychomotor Speed	89.1	17.1	89.4	13.8	-0.13	0.9
Reaction Time	86.4	20.3	86.7	21	-0.05	0.96
Processing Speed	92.7	15.4	90.9	13	0.34	0.74
Cognitive Flexibility	92.2	15.8	91.9	16.9	0.09	0.93
Complex Attention	89.1	18.2	67.4	72.8	1.28	0.23
Executive Function	93.6	15.4	95	16.4	-0.36	0.73

Patients demonstrated significant improvements in composite memory and visual memory at the time of follow-up testing.

Acknowledgement: We thank CNSVS for providing us with technical support and equipment

Total follow-up sessions completed (n = 14) Moon time to follow up: 1 months

At follow-up, children aged 8 – 12 years (n = 8) had increased scores while children aged 13 - 17 (n = 6) had decreased scores* in: psychomotor speed cognitive flexibility executive functioning Children ages 13 – 17 increased their visual memory scores more than children ages 8 – 12.* * Non-significant trends, all two-sample, unequal variance t-tests yielded two-tailed p-values < 0.085.

Strengths and Difficulties Questionnaire

- At baseline, mean scores were within normal ranges.
- Paired comparisons did not show significant changes at follow-up testing.

Lower Neurocognition Index scores at baseline were associated with higher Total Difficulties scores.

Hague Side Effects Scale

- The most commonly reported issues were: having the "blues"
- tantrums or aggression
- school problems
- difficulty concentrating

SUMMARY & CONCLUSIONS

Feasibility of Computerized Cognitive Testing: Computerized cognitive testing was well-tolerated and easily performed in our sample of children with new-onset epilepsy in the clinic setting.

Clinical Significance:

- memory domain at the time of follow-up testing.
- initiation of anti-epileptic medications.
- behavioral problems.

Serial screening using computerized cognitive testing may offer a rapid and efficient method to quantify changes associated with anti-epilepsy therapy.

Carpay, J.A., et al. 1996. Parent-completed scales for measuring seizure severity and severity of side-effects of antiepileptic drugs in childhood epilepsy: development and psychometric analysis. Epilepsy Research 24(3): 173-181.

Goodman, R., et al., 1998. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Eur. Child Adolesc. Psychiatry 7, 125-130.

Gualtieri, C.T., Johnson, L.G., 2006. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 21, 623-643.

RESULTS

Behavioral Assessments

Image (SD) $10.0(8.1)$ $3.0(2.8)$ $1.6(2.1)$ $3.8(2.8)$ $1.7(1.9)$ $8.8(1.8)$ Image (0-13) $0-3$ $0-2$ $0-5$ $0-3$ $6-10$		Total Difficulties	Emotional Symptoms	Conduct Problems	Hyperactivity	Peer Problems	Prosocial Behavior
ormal Range $0-13$ $0-3$ $0-2$ $0-5$ $0-3$ $6-10$	lean (SD)	10.0 (8.1)	3.0 (2.8)	1.6 (2.1)	3.8 (2.8)	1.7 (1.9)	8.8 (1.8)
	ormal Range	0-13	0-3	0-2	0-5	0-3	6-10

 Most parents reported that their children had only mild or no problems since starting medication. • Very few parents noted that their children had very serious problems at time of follow-up.

No clear relationships between HASES scores and changes in cognitive performance.

Children with epilepsy significantly improved their scores on the visual

CNS VS may be able to detect cognitive improvements associated with

Baseline cognitive impairments were associated with parent reports of greater

Cognitive testing may be relevant to real-world difficulties.

Bibliography