

Introduction

The neuropsychological problems associated with ADHD in children well documented, and typically are characterized as core deficits in at and executive functioning.

Neuropsychological testing in ADHD research typically involves trad paper-pencil and manual-performance measures.

Computerized neuropsychological batteries have been used less frequ are becoming more popular in ADHD clinical research.

Purpose: To illustrate a clinical methodology for identifying frank neurocognitive deficits in children and adolescents with ADHD.

Participants

50 children and adolescents between the ages of 7 and 18 years (mean SD=3.0) who were diagnosed with Attention Deficit Hyperactivity D (ADHD).

Clinicians at the North Carolina Neuropsychiatry Clinics gave a prime diagnosis of ADHD to all patients according to the Diagnostic and Sta Manual of Mental Disorders – Fourth Edition

All patients were medication-free (ADHD-untreated) at the time of th evaluation, which included brief computerized neurocognitive testing CNS Vital Signs battery.

Patients with untreated ADHD were compared to 50 age-matched chi adolescents between 7 and 18 years (mean=12.9, SD=3.0; t (98)=0.03 who were selected from the CNS Vital Signs normative database.

Measures

CNS Vital Signs is comprised of seven common neuropsychological including verbal and visual memory, finger tapping, symbol digit cod Stroop test, a shifting attention test, and a continuous performance test

The battery generates 15 primary scores, which are used to calculate scores (Memory, Psychomotor Speed, Reaction Time, Cognitive Flex and Complex Attention) and a summary score (Neurocognition Index

Clinical Usefulness of CNS Vital Signs for Assessing Neurocognition in ADHD

Grant L. Iverson^{1,2}, Brian L. Brooks², Margaret D. Weiss^{1,3}, Lynda G. Johnson⁴, & C. Thomas Gualtieri⁴ ¹University of British Columbia, ²British Columbia Mental Health & Addiction Services, ³British Columbia Provincial ADHD Program, ⁴North Carolina Neuropsychiatry Clinics

Results

have been ttention	There was a significant multivariate effect [Wilks' Lambda=0.81; F(5,94)=4.50, p=.001, partial eta squared=.193].					
ditional	The univariate ANOVA results revealed significantly worse neuropsychological test scores for those in the ADHD group on the Mem (Cohen's d=.45), Psychomotor Speed (d=.48), Cognitive Flexibility (d=.3 and Complex Attention (d=.97) domains.					
aently, but	The groups did not differ on the Reaction Time domain ($p = .088$, d=.35).					
	In the ADHD sample, 56% obtained two or more scores below 1 SD, comp to 26% of the control group [$\chi 2(1)=9.30$, p=.002; Odds Ratio=3.6, 95% CI - 8.4].					
n=12.9, Disorder	Applying the 5th percentile as the cutoff, 40% of the ADHD sample and 10 of the control sample obtained two or more low scores [$\chi 2(1)=12.0$, p=.002 Odds Ratio=6.0, 95% CI=2.1 – 17.1].					
nary tatistical	In the ADHD sample, 28% obtained two or more scores below 2 SD, compared to 4% of the control group [$\chi 2(1)=10.7$, p=.001; Odds Ratio=9.3 95% CI=2.2 - 38.8].					
	Discussion					
neir g using the	The results of this study are largely consistent with the neuropsychological theories and empirical studies on ADHD in children and adolescents.					
ildren and 3, p=.97)	Children and adolescents with ADHD performed more poorly on computer tests of Memory, Psychomotor Speed, Cognitive Flexibility, and Complex Attention.					
measures, ling, the st.	The largest effect sizes for the present study pertained to the two domains to could be considered the most consistent with more traditional measures of executive functioning and higher-order attentional capabilities (i.e., vigilar response inhibition, alternating set, and rapid problem-solving), which are often identified as the core neurocognitive deficits in a subset of children w ADHD.					
5 domain xibility, x).	Children with ADHD were 9.3 times more likely to have two or more dom scores that were more than two standard deviations below the mean (95% $CI=2.2-38.8$).					
C CA	The method for simultaneously interpreting the domain scores from this bac constitutes a unique approach that appears to identify the <u>subset</u> of children adolescents with ADHD who present with neurocognitive deficits prior to					

receiving treatment

ambda=0.81;

worse D group on the Memory itive Flexibility (d=.80),

ores below 1 SD, compared dds Ratio=3.6, 95% CI=1.6

ADHD sample and 10% es [$\chi 2(1)=12.0$, p=.001;

re poorly on computerized xibility, and Complex

d to the two domains that aditional measures of apabilities (i.e., vigilance, m-solving), which are a subset of children with

nave two or more domain below the mean (95%)

in scores from this battery the <u>subset</u> of children and

Table 1. Descriptive statistics, mean comparisons, and effect sizes for the CNS Vital Signs scores.

Score	Group	Mean	Standard Deviation	ANOVA F (p)	Effect Size (Cohen's d)
Neurocognition Index	Control	100.1	12.8	18.26 (<.001)	0.86
	ADHD	87.4	16.6		
Memory	Control	101.4	14.7	4.77 (.031)	0.45
	ADHD	92.8	23.5		
Psychomotor Speed	Control	98.6	24.1	5.77 (.018)	0.48
	ADHD	87.0	24.1		
Reaction Time	Control	99.8	16.5	2.97 (.088)	0.35
	ADHD	93.9	17.7		
Cognitive Flexibility	Control	101.9	16.0	16.17 (<.001)	0.80
	ADHD	88.1	18.3		
Complex Attention	Control	101.0	17.8	22.96 (<.001)	0.97
	ADHD	80.6	24.3		

Note: By convention, effect sizes are interpreted as follows: .2 = small, .5 = medium, and .8 = large.

Table 2. Base rates of low domain scores in untreated ADHD and control.

Number of scores	Untreate	ed ADHD	Matched Controls		Number of scores
below cutoff	%	C%	%	C%	below cutoff
< 1 SD					< 1 SD
5	4.0	4.0	2.0	2.0	5
4	18.0	22.0	2.0	4.0	4
3	16.0	38.0	14.0	18.0	3
2	18.0	56.0	8.0	26.0	2
1	18.0	74.0	22.0	48.0	1
0	26.0	100	52.0	100	0
< 10 th %ile					< 10 th %ile
5	4.0	4.0			5
4	10.0	14.0	4.0	4.0	4
3	20.0	34.0	6.0	10.0	3
2	14.0	48.0	10.0	20.0	2
1	12.0	60.0	18.0	38.0	1
0	40.0	100	62.0	100	0
$\leq 5^{\text{th}}$ %ile					$\leq 5^{\text{th}}$ %ile
5					5
4	12.0	12.0			4
3	10.0	22.0	6.0	6.0	3
2	18.0	40.0	4.0	10.0	2
1	12.0	52.0	18.0	28.0	1
0	48.0	100	72.0	100	0
< 2 SDs					< 2 SDs
5					5
4	2.0	2.0			4
3	10.0	12.0			3
2	16.0	28.0	4.0	4.0	2
1	18.0	46.0	16.0	20.0	1
0	54.0	100	80.0	100	0

Note: There are slight variations due to rounding. These base rates were calculated for the 5 domain scores, Memory Psychomotor Speed, Reaction Time, Cognitive Flexibility, and Complex Attention.