CNS Vital Signs Advancing TBI and Concussion Care

Adding Value to Your Practice by Providing Solutions for Measuring, Monitoring and Managing Neurocognitive and Behavioral Health...

www.CNSVS.com
Contents

■ Why CNS Vital Signs? .. 3
■ Why CNS Vital Signs in Brain Injury? .. 5
■ About CNS Vital Signs Assessment Platforms .. 10
■ CNS Vital Signs mTBI Case Study & Interpretation .. 13
■ Optimized for Rehabilitation .. 18
■ Optimized for Comorbid Assessment .. 21
■ CNS Vital Signs Assessment Platform Implementation ... 31
■ About Concussion Vital Signs (Sports Concussion)... 34
■ Next Steps .. 43

The following pages have been assembled from various sources and publications and is meant to be a reference or roadmap guide to assist and inform how CNS Vital Signs can be used to improve clinical insight and care management, enable current guidelines, be integrated into a clinic or practice, and help improved practice revenues and performance.
Why CNS Vital Signs?

CNS Vital Signs strives to provide clinicians a valid, reliable, and affordable, ‘research quality’ assessment platform. The CNS Vital Signs assessment platforms helps to support a practices comprehensive, state-of-the-art clinical assessment, and evidence-based treatment services for children, adolescents, and adults across the lifespan by:

- Accurately measuring and characterizing a patient’s neurocognitive function based on his or her status or effort
- Facilitating the thinking about the patient’s condition (50+ well known medical and health rating scales) and helping to explain the patient’s current difficulties
- Optimizing serial administration which helps to monitor and guide effective intervention and enables evidence-based medicine and outcomes

CNS Vital Signs offers multiple assessment platform options that can be easily configured and deployed depending on each practices goals and needs.
WHY CNS Vital Signs?
Assessing Brain Function: CNS Vital Signs is a clinical testing procedure used by clinicians to evaluate and manage the neurocognitive state of a patient. Across the lifetime, serial testing allows ongoing assessments of a patient’s condition, disease progression, or clinical outcome.

About CNS Vital Signs

Both Neurocognitive Testing and Evidence-Based Functional Ratings Scales in one Platform

The CNS Vital Signs MULTI-MODAL assessment platform enables the efficient collection and systematic documentation of important brain function and behavioral, symptom and comorbid clinical endpoints using VALID & RELIABLE standardized neurocognitive tests and evidence-based symptom, behavioral and functional rating scales.

As a clinical instrument, the CNS Vital Signs neurocognitive testing and evidence-based rating assessment tools have been used to detect impairment, follow the course of an illness, and monitor response to treatment; it has also been used as a research tool to screen for cognitive disorders in epidemiological / surveillance and pharmaceutical studies and to follow cognitive changes.

Clinician Benefits

- RAPID INSIGHT... computerized neurocognitive testing helps clinicians evaluate and describe the health of the cognitive or higher functions of the brain in a more granular and standardized fashion.
- DASHBOARD VIEW... Neurocognitive domain functions and functional status is presented in a summary view that is easy to interpret.
- LONGITUDINAL VIEW... Repeated testing allows clinicians to track disease progress and treatment/rehabilitation effects
- DETAILED VIEW... Each report presents the testing data in a detailed view. All results can be easily exported to EMR’s or spreadsheets for clinical or research purposes.
- VALID ACROSS the LIFE SPAN... Peer reviewed normative data allows clinicians to examine patients from age 8 to 90.
Introduction: CNS Vital Signs in Brain Injury

CNS Vital Signs provides clinicians and researchers with leading edge neurocognitive and behavioral health assessment technologies that efficiently collects valid and reliable brain & behavioral clinical endpoints for a more objective view of a patient’s functional status, disease progression, and outcomes. The CNS Vital Signs Assessment platform supports a lifespan chronic care model and helps enable productive interactions between the family, caregivers, and a specialist practice team.

CNS Vital Signs computerized neuropsychological tests can enhance and support brain injury rehabilitation...

“A thorough evaluation of a persons cognitive strengths and weaknesses can help the clinician formulate... information important in planning intervention strategies... Neuropsychological test performance and behavioral data provide complimentary information and lead to a more clearly defined view of a persons abilities and disabilities. Identifying when a breakdown in functioning occurs (behavioral data) and for what reason (neuropsychological data) can help tailor a more individualized rehabilitation regimen that is most likely to benefit the client.”

Adapted from: Neuropsychology of Everyday Functioning

CNS Vital Signs computerized neuropsychological tests can enhance efficiency and insight in assessing cognitive status and the difference between “normal performance” and a patients current status and provides the clinician with a normative comparison that can be paired with an interview, exam, and other valid test(s) or rating scales to help add validity to the evaluation and management brain injuries. Re-evaluation or serial testing with CNS Vital Signs supports the effective management and tailoring of medications or treatments and assessment of outcomes. A very detailed assessment of abilities is auto-scored, and the pattern of strengths and weaknesses can be used in treatment planning and measuring progress.

One of the most robust features of the CNS Vital Signs assessment is its randomization algorithm allowing for an almost infinite number of alternate forms. This allows for retesting patients and minimal practice effects. Clinicians establish a baseline and upon re-test, compare the results to assist in decision-making regarding the observed change in the patient’s condition, monitor disease or recovery progress, measure treatment results, compliance, and outcomes e.g., Concussion Management, Brain Rehabilitation, Medication Optimization , Etc. Often Patients and families benefit from seeing testing results allowing the understanding of the status and nature of their or a loved one’s neurocognitive function. CNS Vital Signs is one of many tools clinicians use in evaluating changes in a patient’s condition.

If you have question or would like to register for a free in-service webinar go to www.CNSVS.com or email support@cnsvs.com or call 1.888.750.6941.
How Can CNS Vital Signs Help?

Mild traumatic brain injury: a neuropsychiatric approach to diagnosis, evaluation, and treatment

A thorough physical and neuropsychiatric examination is an essential part of the evaluation of the brain-injured individual. The physical examination should include a detailed neurological examination, including assessment for primitive reflexes (“frontal release signs”) and other neurological “soft-signs” that may reflect subtle neurological dysfunction not evidenced by routine (“elemental”) neurological examination. Neuropsychiatric assessment should include a thorough general mental status examination...

...as well as a detailed cognitive examination; the latter examination should emphasize timed tests of attention and information processing, memory encoding and retrieval, and executive function.

Clinicians should be aware that the Mini-Mental State Examination (MMSE) (Folstein et al 1975) is not generally regarded by brain injury specialists as an adequate tool with which to screen for the types of cognitive impairment produced by mild TBI.

Cognitive, emotional, behavioral, and physical impairments are common sequelae of mild TBI and may in a nontrivial minority of persons persist into the late period following injury.

Typical postconcussive symptoms include headache, dizziness, and visual disturbances; attention, memory, and other cognitive impairments; irritability, anxiety, depression, and other emotional disturbances; and behavioral problems such as apathy or impulsivity. The evaluation of postconcussive symptoms requires an understanding of the multiple factors relevant to the production and maintenance of symptoms following trauma to the brain...

Valid & Reliable in Assessing TBI Impairment

Objective
Computerized neurocognitive testing (CNT) appears to be suited to measure relatively mild degrees of neurocognitive impairment in circumstances where speed, efficiency, and low cost are important. Computerized tests are used in the evaluation and management of patients who have had mild brain injuries; the objective is to determine if computerized testing is equally reliable and valid in the evaluation of patients who have had more severe brain injuries.

Participants
141 patients, aged 18–65 years, who had sustained traumatic brain injuries (TBIs): 13 patients with postconcussion syndrome; 15 who had recovered from mild brain injuries; 85 patients who had had severe brain injuries, but who had recovered, and were living independently; and 28 severe brain injury patients who were unable to live without assistance; compared with 145 normal controls.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390690/?log$=activity

Design
A cross-sectional, naturalistic study of brain injury patients compared with normal controls.

Setting
An outpatient neuropsychiatry clinic.

Main Outcome Measures
The CNS Vital Signs (CNS VS) battery is a PC-based system that includes tests of verbal and visual memory, psychomotor speed, complex attention, reaction time, and cognitive flexibility.

Results
Performance on the CNS VS battery was related to severity of brain injury and degree of recovery. Tests of psychomotor speed and cognitive flexibility were the most relevant to TBI status. Patients who had recovered from mild brain injuries scored almost as well as normal controls. The Neurocognition Index (NCI), a summary score based on performance on all the tests in the battery, was 100 for normal controls and 98 for recovered mild brain injury patients. Postconcussive patients scored 82 on the MCI, and severe brain injury patients scored 66 on the NCI if they were living independently and 47 if they were not.

Conclusions
Computerized tests like CNS VS allow clinicians the advantage of precise neurocognitive measurement in the service of diagnosis and appropriate treatment. CNTs are never going to replace the flexibility or comprehensiveness of conventional neuropsychological testing, but they have a role to play in circumstances where a full test battery is not feasible, such as screening and serial assessment.
Valid & Reliable in Assessing TBI Impairment

CNS Vital Signs: A Computerized Test Battery Sensitive to Mild and Severe Brain Injury

Computerized tests like CNS Vital Signs allow clinicians the advantage of precise neurocognitive measurement in the service of evaluation, management, and appropriate treatment. CNT’s are never going to replace the flexibility or comprehensiveness of conventional neuropsychological testing, but they have a role to play in circumstances where a full test battery is not feasible, such as patient in-take (Neurobehavioral Status Exam 96116) and serial assessment.

Why Use CNS Vital Signs to Assess Brain Injury?

The CNS Vital Signs VSX Assessment Platform represents a legacy of innovation and a commitment to advancing neurocognitive and behavioral clinical assessment tools that help support a TEAM MANAGEMENT concept.

Clinical Pathology
Measure and Monitor

Assess BRAIN FUNCTION and Determine the Existence or Level of IMPAIRMENT...

CNS Vital Signs computerized neurocognitive testing allows clinicians to assess abnormal neurocognitive impairment by comparing patients to a ‘PEER REVIEWED’ normative data set from ages 8 to 90 across the lifespan.

Provides a broad spectrum of clinical domains and the sensitivity to assess neurocognitive function to reveal abnormality in the absence of positive findings in CT and MRI scans e.g. concussion.

Comorbid Status
Measure and Monitor

Assess symptoms or COMORBID conditions...

CNS Vital Signs supports many BRAIN INJURY guidelines.

Evidence-based rating scales and neurocognitive testing can help clinicians sort out symptom, behavioral, and comorbid issues and help better understand possible brain and behavior relationships.

Serial Assessment
Longitudinal View

KEY ADVANTAGE

...contains an auto-randomization algorithm... Ideal for serial testing with an almost unlimited number of alternate forms (other systems use a pseudo-randomization or limited number of alternate forms).

This allows practices to shift toward new assessment approaches that allow for monitoring of change/ recovery over time aiding the conventional neuropsychological examination documenting the patient’s cognitive state at a point in time by adding a more efficient in-take and serial testing of the patient’s ongoing recovery.

Neuropsychological testing is the “gold standard” for evaluation of patients who have had brain injuries. But there are hardly enough qualified neuropsychologists to keep up with the 2 million or so Americans who have brain injuries every year, and even if there were, the cost of repeated evaluations as the patient recovers (or fails to recover, as the case may be) would be prohibitive. Neuropsychologists have tried to address this problem by introducing brief screening batteries, rating scales, or CNT batteries. Adapted from: Medscape J Med. 2008; 10(4): 90.

Neuropsychological testing is the “gold standard” for evaluation of patients who have had brain injuries. But there are hardly enough qualified neuropsychologists to keep up with the 2 million or so Americans who have brain injuries every year, and even if there were, the cost of repeated evaluations as the patient recovers (or fails to recover, as the case may be) would be prohibitive. Neuropsychologists have tried to address this problem by introducing brief screening batteries, rating scales, or CNT batteries. Adapted from: Medscape J Med. 2008; 10(4): 90.
Advancing Brain Injury Care
CNS Vital Signs TBI – Concussion Toolbox

Clinician Expertise

Brain Function: Memory, Attentional, Executive, Psychomotor Speed & more

Computerized Neurocognitive Testing

- Nine Neurocognitive Domains Measured
- Memory – Immediate and Delayed
- Frontal Lobe / Executive Control Tests
- Processing and Psychomotor Speed
- Immediate Auto – Scored Reports
- Rapid Assessment - 30 Minute Initial Assessment/Baseline, 15 Minute Follow-up for Treatment Effect
- Easy to Interpret
- Systematic & Standardized Documentation for Patient Registry/Research
- HIPAA Compliant

Computerized Medical and Health Rating Scales*

- Neurobehavioral Symptom Inventory (NSI)
- Dizziness Handicap Inventory (DHI)
- Head Injury Questionnaire (HIQ)
- PTSD Checklist – Civilian, Military, Stressor
- NeuroPsych Questionnaire NPQ-207 & NPQ-45 both Child & Adult
- Epworth Sleepiness Scale
- Pittsburgh Sleep Quality Index
- Drug Use Questionnaire (DAST)
- Zung Self-Rating Depression Scale

* Meets the Defense and Veterans Brain Injury Center (DVBIC) Mild Traumatic Brain Injury (mTBI) Clinical Guidance
 Used with permission... Free use of rating scales
The purpose of this study... was to evaluate the discriminant validity of the CNS VS battery in patients with a spectrum of TBIs. The results of the investigation indicate that the CNS VS battery does have discriminant validity. When administered in a clinical setting to brain injury patients, the test battery generates results that are similar to conventional neuropsychological tests and other computerized test batteries...

On the CNS VS battery, patients with acute post-concussional symptoms were found to have measurable cognitive deficits. Patients who were more than 12 months post concussion performed normally on the test battery.

A Systems Based Approach

Neurocognitive Tests
CNS Vital Signs is a computerized neurocognitive health assessment platform that enables the OBJECTIVE EVALUATION of COGNITION...

Brain Injury Rating Scales
...identifying symptoms, possible comorbidities, behavioral issues, and other important clinical information.

Screening
- Patient In-Take / Early Detection
- Multi-Modal Professional Assessment
- Measure Progress and Performance

Evidence–Based Rating Scales
- Identify
 - Possible Behavioral or Comorbid Issues
 - Cognitive Status - Baseline
 - NeuroPsych, Mental, and Behavioral Health Issues (symptoms that can effect educational or vocational productivity and performance)
- Behavioral
 - Neuropsychiatric Symptoms & Comorbidities
 - Attentional Issues
 - Internalizing (anxiety - depression - PTSD) Issues
 - Externalizing (behavioral - conduct) issues
 - ...and many more.
- Brain
 - Memory
 - Attentional
 - Executive Control
 - Processing Speed
 - Cognitive Flexibility
 - Social Acuity
 - Reasoning
 - Working Memory
 - ...and many more
- Monitor
 - Assess Medication Effect
 - Measure Progress or Changes
 - Document for Outcomes and/or Research
 - Conduct Web Based Mental and Behavioral Health Surveillance
 - Improve Compliance

Neurocognitive Testing

Follow-up and Outcomes

SOPHISTICATED... yet... SIMPLE Systems-Based approach to Screening, Assessment, & Surveillance...
HOW? CNS Vital Signs begins with...

A: Conducting a Valid Assessment (Refer to the Test Administration Guide.) To begin the staff should collect information about the CHIEF or REFERRAL COMPLAINT. This will be a primary driver for the selection of tests and rating scales. For initial evaluations or in complex presentations, a broad spectrum battery is always an appropriate starting point.

B: Review the immediately auto-scored report to 1 validate testing effort, 2 evaluate the Domain Dashboard to quickly assess the level of impairment or grade the deficit, and 3 Evaluate the Domain Pattern to help rule-in, rule-out, or confirm certain clinical conditions. Feedback to the patient on the testing results may be presented at the clinical encounter or at a subsequent patient visit.

C: If invalid test results were noted then consider re-testing the patient to confirm clinical results. If the test results were valid, then, as part a continuum of care, reschedule testing to track disease progression and measure ongoing status or outcomes.

NOTE: The Validity Indicator denotes a guideline for representing the possibility of an invalid test or domain score. “No” means a clinician should evaluate whether or not the test subject understood the test, put forth their best effort, or has a clinical condition requiring further evaluation.
Evaluate Severity – Impairment Status

CNS Vital Signs grades severity of impairment based on an age-matched normative comparison database... mTBI Example

<table>
<thead>
<tr>
<th>Psychometric and Normative Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS Vital Signs Clinical Report</td>
</tr>
<tr>
<td>Test Date: July 23 2011, 10:48:38</td>
</tr>
</tbody>
</table>

Subject ID: mTBI or AD/HD

Administrator: Technician

Language: English (United States)

Age: 27

Patient Profile:

<table>
<thead>
<tr>
<th>Domain Scores</th>
<th>Subject Score</th>
<th>Standard Score</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurocognitive Index (NCI)</td>
<td>NA</td>
<td>85</td>
<td>16</td>
</tr>
<tr>
<td>Composites Memory</td>
<td>102</td>
<td>103</td>
<td>58</td>
</tr>
<tr>
<td>Verbal Memory</td>
<td>51</td>
<td>93</td>
<td>32</td>
</tr>
<tr>
<td>Visual Memory</td>
<td>51</td>
<td>110</td>
<td>75</td>
</tr>
<tr>
<td>Processing Speed</td>
<td>48</td>
<td>79</td>
<td>8</td>
</tr>
<tr>
<td>Executive Function</td>
<td>34</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td>Psychomotor Speed</td>
<td>174</td>
<td>93</td>
<td>32</td>
</tr>
</tbody>
</table>

| Reaction Time | 555 | 107 | 68 |

Cognitive Flexibility:

<table>
<thead>
<tr>
<th>Category</th>
<th>Score</th>
<th>Standard</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>26</td>
<td>62</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Test Time (min:sec): 29:12

Domain Dashboard: Above average domain scores indicate a standard score (SS) greater than 109 or a percentile rank (PR) greater than 74, indicating a high functioning test subject. Average is a SS 90-109 or PR 25-74, indicating normal function. Low average is a SS 80-89 or PR 5-24, indicating a deficit or impairment. Below average is a SS 70-79 or PR 2-8, indicating a moderate level of deficit or impairment. Very low is a SS less than 70 or a PR less than 2, indicating a deficit and impairment. Reaction times are in milliseconds. An “*” denotes that “lower is better”, otherwise higher scores are better. Subject scores are raw scores calculations generated from data values of the individual subsets.

VI = Validity Indicator: Denotes a guideline for representing the possibility of an invalid test or domain score. “N” means a clinician should evaluate whether or not the test subject understood the test, put forth his or her best effort, or has a clinical condition requiring further evaluation.

Verbal Memory Test (VMT) Standard Score:

Correct/Hit Immediate	13	102	55
Correct/Passes Immediate	14	95	57
Correct/Hit Delay	9	85	16
Correct/Passes Delay	16	109	73

Visual Memory Test (VMT) Standard Score:

Correct/Hit Immediate	13	107	68
Correct/Passes Immediate	14	117	87
Correct/Hit Delay	13	111	77
Correct/Passes Delay	13	93	32

Finger Tapping Test (FTT) Standard Score:

| Right Taps Average | 64 | 104 | 61 |
| Left Taps Average | 60 | 105 | 63 |

Symbol Digit Coding (SDC) Standard Score:

| Correct Responses | 50 | 80 | 9 |
| Errors | 2 | 92 | 30 |

Stramp Test (ST) Standard Score:

Simple Reaction Time Correct*	231	106	70
Complex Reaction Time Correct*	542	100	50
Stramp Reaction Time Correct*	568	112	79
Stramp Completion Errors*	8	5	1

Shifting Attention Test (SAT) Standard Score:

Correct Responses	47	87	12
Errors	13	75	5
Correct Reaction Time	1003	97	42

Continuous Performance Test (CPT) Standard Score:

Correct Responses	40	104	61
Omission Errors*	0	104	61
Commission Errors*	0	108	70
Choice Reaction Time Correct*	400	99	47

The SDC test measures speed of processing and draws upon several cognitive processes simultaneously, such as visual scanning, visual perception, visual memory, and motor functions. Errors may be due to impulsive responding, misperception, or confusion.

The ST measures simple and complex reaction time, inhibition / distractibility, mental flexibility or directed attention. The ST helps assess how well a subject is able to adapt to rapidly changing and increasingly complex set of directions. Prolonged reaction times indicate cognitive slowing / impairment. Errors may be due to impulsive responding, misperception, or confusion.

The SAT measures executive function or how well a subject recognizes set shifting (mental flexibility) and abstraction (rules, categories) and manages multiple tasks simultaneously. Subjects have to adjust their responses to randomly changing rules. The best scores are high correct responses, few errors and a short reaction time. Normal subjects may be slow but accurate, fast but not so accurate. Attention deficit may be apparent.

The CPT measures sustained attention or vigilance and choice reaction time. Most normal subjects obtain near-perfect scores on this test. A long response time may suggest cognitive slowing and/or impairment. More than 3 errors (total) may be densely significant. More than 4 errors (total) indicate attentional dysfunction.
Neurocognitive Domain Dashboard mTBI Example

CNS Vital Signs presents testing results in Subject (raw), Standard Scores, and Percentile Ranks. **NOTE:** See the CNS Vital Signs Interpretation Guide for more information.

Patient Profile:

<table>
<thead>
<tr>
<th>Standard Score Range</th>
<th>> 109</th>
<th>90 - 109</th>
<th>80 - 89</th>
<th>70 - 79</th>
<th>< 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentile Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentile</td>
<td>> 74</td>
<td>25 - 74</td>
<td>9 - 24</td>
<td>2 - 8</td>
<td>< 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain Scores</th>
<th>Subject Score</th>
<th>Standard Score</th>
<th>Percentile</th>
<th>VI**</th>
<th>Above</th>
<th>Average</th>
<th>Low Average</th>
<th>Low</th>
<th>Very Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurocognition Index (NCI)</td>
<td>NA</td>
<td>85</td>
<td>16</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Composite Memory</td>
<td>102</td>
<td>103</td>
<td>58</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Verbal Memory</td>
<td>51</td>
<td>93</td>
<td>32</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Visual Memory</td>
<td>51</td>
<td>110</td>
<td>75</td>
<td>Yes</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing Speed</td>
<td>48</td>
<td>79</td>
<td>8</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Executive Function</td>
<td>34</td>
<td>75</td>
<td>5</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Psychomotor Speed</td>
<td>174</td>
<td>93</td>
<td>32</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Reaction Time*</td>
<td>555</td>
<td>107</td>
<td>68</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Complex Attention*</td>
<td>21</td>
<td>56</td>
<td>1</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Cognitive Flexibility</td>
<td>26</td>
<td>63</td>
<td>1</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Total Test Time (min: secs)</td>
<td>29:12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SD = Standard Deviation from the MEAN
CNS Vital Signs Embedded Indicators of Valid Effort

One factor that has been consistently shown to be related to poor outcome after a TBI is litigation/compensation. For example, a meta-analysis of 17 studies on the effects of financial incentives on recovery after TBI found that involvement in litigation for financial compensation was consistently associated with poor outcomes after MTBI (Binder & Rohling, 1996(49)). In that study the authors noted the effect was strongest for mild head injury.

A key advantage to the VSX assessment platform is the autoscoring of embedded indicators of patient testing effort. As with all psychological and neuropsychological testing neuropsychiatric patients can feign their responses due to incentives. When analyzing test data, either in research, or in clinical practice, it is important to know whether a test result is valid or not. Clinicians need to know if testing subjects are generating “dubious results” or a “non-credible response pattern.” CNS Vital Signs has developed “validity indicators” for its tests and domains that indicate whether the patient gave poor effort or generated invalid results. Should a subject test abnormally low triggering an “invalid” test (NO as displayed in the Validity Indicator section of the report) then that would be a reason for retesting the individual, unless your clinical judgment makes you believe that is the best score the patient can achieve. Additional Information is available at our website

Clinical Domains

<table>
<thead>
<tr>
<th>Clinical Domains</th>
<th>TEST VALIDITY INDICATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Memory</td>
<td>Both Verbal and Visual Memory valid.</td>
</tr>
<tr>
<td>Verbal Memory</td>
<td>Verbal Memory raw score > 30.</td>
</tr>
<tr>
<td>Visual Memory</td>
<td>Visual Memory raw score > 30.</td>
</tr>
<tr>
<td>Processing Speed</td>
<td>SDC: more than 20 correct responses.</td>
</tr>
<tr>
<td>Executive Function</td>
<td>SAT errors < SAT correct responses.</td>
</tr>
<tr>
<td>Psychomotor Speed</td>
<td>FTT: total taps > 40 & or SDC: > 20 correct responses</td>
</tr>
<tr>
<td>Reaction Time</td>
<td>Stroop: Simple RT < Complex RT < Stroop RT</td>
</tr>
<tr>
<td>Complex Attention</td>
<td>Valid Stroop, CPT, and SAT. Correct > incorrect response in all tests.</td>
</tr>
<tr>
<td>Cognitive Flexibility</td>
<td>Valid Stroop and SAT. Correct > incorrect responses in all tests.</td>
</tr>
<tr>
<td>Sustained Attention</td>
<td>Valid 4PCPT: Part 2 > 2 correct; part 3 > 5 correct; part 4 > 5 correct. Correct > incorrect responses.</td>
</tr>
<tr>
<td>Working Memory</td>
<td></td>
</tr>
</tbody>
</table>

FTT - Finger Tapping Test; SAT – Shifting Attention Test; SDC – Symbol Digit Coding Test; RT – Reaction Time; CPT – Continuous Performance Test; POET – Perception of Emotions Test; NVR – Non-verbal Reasoning; 4PCPT – Four Part CPT
Calculating Domain Scores

VSX BRIEF-CORE Clinical Domains

<table>
<thead>
<tr>
<th>Domain Score Calculations: 1600+ Norms, Ages 8 to 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurocognition Index - NCI</td>
</tr>
<tr>
<td>Average of five domain scores: Composite Memory, Psychomotor Speed, Reaction Time, Complex Attention, and Cognitive Flexibility; representing a form of a global score of neurocognition</td>
</tr>
<tr>
<td>Composite Memory</td>
</tr>
<tr>
<td>VBM Correct Hits Immediate + VBM Correct Passes Immediate + VBM Correct Hits Delay + VBM Correct Passes Delay + VIM Correct Hits Immediate + VIM Correct Passes Immediate + VIM Correct Hits Delay + VIM Correct Passes Delay</td>
</tr>
<tr>
<td>Verbal Memory</td>
</tr>
<tr>
<td>VBM Correct Hits Immediate + VBM Correct Passes Immediate + VBM Correct Hits Delay + VBM Correct Passes Delay</td>
</tr>
<tr>
<td>Visual Memory</td>
</tr>
<tr>
<td>VIM Correct Hits Immediate + VIM Correct Passes Immediate + VIM Correct Hits Delay + VIM Correct Passes Delay</td>
</tr>
<tr>
<td>Processing Speed</td>
</tr>
<tr>
<td>SDC Correct Responses - SDC Errors</td>
</tr>
<tr>
<td>Executive Function</td>
</tr>
<tr>
<td>SAT Correct Responses - SAT Errors</td>
</tr>
<tr>
<td>Psychomotor Speed</td>
</tr>
<tr>
<td>FTT Right Taps Average + FTT Left Taps Average + SDC Correct Responses</td>
</tr>
<tr>
<td>Reaction Time</td>
</tr>
<tr>
<td>(ST Complex Reaction Time Correct + Stroop Reaction Time Correct) / 2</td>
</tr>
<tr>
<td>Complex Attention</td>
</tr>
<tr>
<td>Stroop Commission Errors + SAT Errors + CPT Commission Errors + CPT Omission Errors</td>
</tr>
<tr>
<td>Cognitive Flexibility</td>
</tr>
<tr>
<td>SAT Correct Responses - SAT Errors - Stroop Commission Errors</td>
</tr>
</tbody>
</table>

VSNP Clinical Domains

<table>
<thead>
<tr>
<th>Domain Score Calculations: 700+ Norms, Ages 8 to 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Memory</td>
</tr>
<tr>
<td>(4PCPT Part 4 Correct Responses) - (4PCPT Part 4 Incorrect Responses)</td>
</tr>
<tr>
<td>Sustained Attention</td>
</tr>
<tr>
<td>(4PCPT Part 2 Correct Responses + 4PCPT Part 3 Correct Responses + 4PCPT Part 4 Correct Responses) – (4PCPT Part 2 Incorrect Responses + 4PCPT Part 3 Incorrect Responses + 4PCPT Part 4 Incorrect Responses)</td>
</tr>
<tr>
<td>Social Acuity</td>
</tr>
<tr>
<td>POET Correct Responses – POET Commission Errors</td>
</tr>
<tr>
<td>Reasoning (non-verbal)</td>
</tr>
<tr>
<td>NVRT Correct Responses – NVRT Commission Errors</td>
</tr>
</tbody>
</table>

Abbreviations Defined:

VBM – Verbal Memory Test; VIM – Visual Memory Test; SDC – Symbol Digit Coding Test; SAT – Shifting Attention Test; FTT – Finger Tapping Test; ST – Stroop Test; CPT – Continuous Performance Test; 4PCPT – Four Part CPT; POET – Perception of Emotions Test; NVR – Non-verbal Reasoning Test.
Rehabilitation has been defined in many ways, but generally, it is concerned with maximizing the quality of life of daily living activities after an injury or illness. Traumatic Brain Injury (TBI) and a Stroke can significantly affect many neurocognitive, physical, and psychological skills. “Neurocognition” refers to the higher brain functions: learning, remembering, concentrating, solving problems and making decisions. Neurocognitive processes are active in virtually all of our day-to-day activities. Neurocognitive testing helps you MEASURE, MONITOR, and MANAGE the health of these higher functions of the brain. “Rehabilitation” is generally not synonymous with “Restoration” of normal function. However, with CNS Vital Signs normative standardization sample (1600+ Norms from ages 8 to 90) clinicians can better understand and communicate the level of dysfunction or disability the patient is experiencing.

CNS Vital Signs helps you identify the level of impairment on in-take, serially assess and monitor, and educate the family members, support network, and the patient about the level of activity, challenges, and participation (disability & handicap) that might be encountered.

Adapted from: Jonathan J. Evans; The Oliver Zangwill Centre approach to neuropsychological rehabilitation.
CNS Vital Signs in Brain Injury & Rehabilitation

50+ Evidence-Based Rating Scales

Automatically scored...Immediate reporting...Data SYNChed and stored securely...Enabling enhanced clinical insight and clinic efficiencies.

Valid and Reliable Neurocognitive Tests

CNS Vital Signs Supports Integrated Neurocognitive Care

- Normal
- Post Concussion Syndrome
- Severe Brain Injury
- PTSD
- Depression
- Conversion Disorder

Solutions for Measuring, Monitoring, and Managing Neurocognitive and Behavioral Health
CNS Vital Signs in Brain Injury & Rehabilitation

<table>
<thead>
<tr>
<th>Composite Memory</th>
<th>Executive Function</th>
<th>Processing Speed</th>
<th>Psychomotor Speed</th>
<th>Reaction Time</th>
<th>Complex Attention</th>
<th>Cognitive Flexibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learn new product facts</td>
<td>Remember what I have done – what have I read, who I have visited, what they said, what’s going on in their life etc.</td>
<td>Remember to do things e.g. keep appointments, send information, complete information</td>
<td>Solve problems- changing schedule; problem with delivery, etc.</td>
<td>Listen to people 1:1 or in meetings</td>
<td>Plan work tasks e.g. organizing visits to customers</td>
<td>Calculate and prepare invoices, do travel claim form, fill in tax form</td>
</tr>
</tbody>
</table>

EXAMPLE: A baseline using VSX BRIEF-CORE 7 neurocognitive tests, the Medical Outcomes Survey SF-36, the Epworth Sleepiness Scale, and the NPQ- 45 NeuroPsych Questionnaire take about 40 minutes to take. Using the CNS Vital Signs assessment will allow you to form a better understanding of the challenges the patient and their family face, and what contributing factors (symptoms, comorbidities, behaviors) may be involved. The information generated in the auto-scored report can be used in discussions with the patient and their family, to plan future clinical work or other services, and to individualize a treatment program designed to meet the patients specific needs as well as track individual progress and outcomes.
TBI’s can be Comorbid & Multifactorial in Nature

- PTSD
- Substance Abuse
- AD/HD
- Families
- Depression
- Pain
- Physical Injuries
- TBI’s & Rehab

TBI’s can be Comorbid & Multifactorial in Nature.
NeuroPsych Questionnaire (NPQ) LF-207 (Page 1 of 9)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Score</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td>140</td>
<td>Mild</td>
</tr>
<tr>
<td>Impulsive</td>
<td>150</td>
<td>Moderate</td>
</tr>
<tr>
<td>Learning</td>
<td>115</td>
<td>Mild</td>
</tr>
<tr>
<td>Memory</td>
<td>56</td>
<td>Not a problem</td>
</tr>
<tr>
<td>Anxiety</td>
<td>230</td>
<td>Severe</td>
</tr>
<tr>
<td>Panic</td>
<td>83</td>
<td>Mild</td>
</tr>
<tr>
<td>Agoraphobia</td>
<td>100</td>
<td>Mild</td>
</tr>
<tr>
<td>Obsessions & Compulsions</td>
<td>111</td>
<td>Mild</td>
</tr>
<tr>
<td>Social Anxiety</td>
<td>125</td>
<td>Mild</td>
</tr>
<tr>
<td>Depression</td>
<td>212</td>
<td>Moderate</td>
</tr>
<tr>
<td>Mood Stability</td>
<td>192</td>
<td>Moderate</td>
</tr>
<tr>
<td>Mania</td>
<td>100</td>
<td>Mild</td>
</tr>
<tr>
<td>Aggression</td>
<td>150</td>
<td>Moderate</td>
</tr>
<tr>
<td>Psychotic</td>
<td>143</td>
<td>Mild</td>
</tr>
<tr>
<td>Somatic</td>
<td>78</td>
<td>Mild</td>
</tr>
<tr>
<td>Fatigue</td>
<td>150</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sleep</td>
<td>225</td>
<td>Severe</td>
</tr>
<tr>
<td>Suicide</td>
<td>300</td>
<td>Severe</td>
</tr>
<tr>
<td>Pain</td>
<td>100</td>
<td>Mild</td>
</tr>
<tr>
<td>Substance Abuse</td>
<td>133</td>
<td>Mild</td>
</tr>
<tr>
<td>Average Symptom Score</td>
<td>142</td>
<td>Mild</td>
</tr>
<tr>
<td>PTSD</td>
<td>222</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bipolar</td>
<td>155</td>
<td>Mild</td>
</tr>
<tr>
<td>Autism</td>
<td>158</td>
<td>Mild</td>
</tr>
<tr>
<td>Aspergers</td>
<td>153</td>
<td>Mild</td>
</tr>
<tr>
<td>ADHD</td>
<td>153</td>
<td>Moderate</td>
</tr>
<tr>
<td>MCI</td>
<td>108</td>
<td>Mild</td>
</tr>
<tr>
<td>Concussion</td>
<td>172</td>
<td>Moderate</td>
</tr>
<tr>
<td>Anxiety/Depression</td>
<td>226</td>
<td>Severe</td>
</tr>
</tbody>
</table>

Domain

- **Attention**: 140 (Mild)
- **Impulsive**: 150 (Moderate)
- **Learning**: 115 (Mild)
- **Memory**: 56 (Not a problem)
- **Anxiety**: 230 (Severe)
- **Panic**: 83 (Mild)
- **Agoraphobia**: 100 (Mild)
- **Obsessions & Compulsions**: 111 (Mild)
- **Social Anxiety**: 125 (Mild)
- **Depression**: 212 (Moderate)
- **Mood Stability**: 192 (Moderate)
- **Mania**: 100 (Mild)
- **Aggression**: 150 (Moderate)
- **Psychotic**: 143 (Mild)
- **Somatic**: 78 (Mild)
- **Fatigue**: 150 (Moderate)
- **Sleep**: 225 (Severe)
- **Suicide**: 300 (Severe)
- **Pain**: 100 (Mild)
- **Substance Abuse**: 133 (Mild)
- **Average Symptom Score**: 142 (Mild)
- **PTSD**: 222 (Moderate)
- **Bipolar**: 155 (Mild)
- **Autism**: 158 (Mild)
- **Aspergers**: 153 (Mild)
- **ADHD**: 153 (Moderate)
- **MCI**: 108 (Mild)
- **Concussion**: 172 (Moderate)
- **Anxiety/Depression**: 226 (Severe)

Description

The Neuropsych Questionnaire asks patients (or an appropriate observer) a series of questions about their clinical state. The questions are about the symptoms of various neuropsychiatric disorders. The terminology is similar to that used in the diagnostic manuals, and in many familiar clinical questionnaires and rating scales; but it has been simplified, and all symptoms are scored on the same metric.

Scores are reported on a scale of 0 (not a problem) to 300 (severe). As a rule, scores above 225 indicate a severe problem; scores from 150-224 indicate a moderate problem; and scores from 75-149, a mild problem. A high score on the Neuropsych Questionnaire means that the patient is reporting more symptoms of greater intensity.

It doesn't necessarily mean that the patient has a particular condition; just that he or she (or their spouse, parent or caregiver) are saying that they have a lot of intense symptoms. Conversely, a low score simply means that the patient (or caregiver) is not reporting symptoms associated with a particular condition, at least during the period of time specified. It does not mean that the patient does not have the condition. Just as some people over-state their problems, others tend to under-state their problems. The Neuropsych Questionnaire is not a diagnostic instrument. The results it generates are only meant to be interpreted by an experienced clinician in the course of a clinical examination.
Helping Assess Comorbidities

Cognition and Depression

"Indeed, there is some suggestion that cognitive or executive functioning deficits may be a trait risk factor for depression (Douglas and Porter, 2009; Frasch et al., 2009; Micco et al., 2009; Reppermund et al., 2009). Furthermore, worse neuropsychological test performance at baseline is associated with poorer response to treatment (Dunkin et al., 2000; Kampf-Sherf et al., 2004; Mohlman and Gorman, 2005), and cognitive deficits are more pronounced in patients who are unemployed (Baune et al., 2010). It is possible that treatment refractory depression is a subtype characterized in part by cognitive impairment."

The accurate identification and quantification of neurocognitive impairment are important for research relating to neurobiological underpinnings, treatment, and functional outcome in patients with mood disorders. It is essential, methodologically, that we have accurate methods for identifying those patients who are objectively cognitively impaired and separate them from patients who have the subjective experience of poor thinking skills or thinking that is easily perturbed by negative affect, but perform normally on cognitive testing in controlled conditions. The treatments and outcomes for these two groups may differ markedly, as well as the prognosis."

Cognition and Depression

Cognitive Flexibility
Domain scored from two venerable AD/HD tests

![Graph showing distributions of CNS Vital Signs cognitive flexibility index score in patients with or without impaired cognition.](image_url)

Healthy Control
Mood Disorder, Normal Cognition
Mood Disorder, Cognitive Impairment

Fig. 3. Distributions of CNS Vital Signs *cognitive flexibility* index score in patients with or without impaired cognition. Figure note: Healthy control, N=660. Mood disorder, normal cognition, n=128. Mood disorder, cognitive impairment, n=58. *Normative scores were truncated at 40. Each value represents the percentage of subjects in that score range.*
50+ Rating Scales: Easy to Interpret Reports

Medical Outcomes Short Form Health Survey (SF-36) Questions

<table>
<thead>
<tr>
<th>Domain</th>
<th>Score</th>
<th>Standard</th>
<th>Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Functioning</td>
<td>95</td>
<td>113</td>
<td>81</td>
</tr>
<tr>
<td>Role Functioning - Physical</td>
<td>0</td>
<td>81</td>
<td>10</td>
</tr>
<tr>
<td>Role Functioning - Emotional</td>
<td>0</td>
<td>76</td>
<td>5</td>
</tr>
<tr>
<td>Energy/ Fatigue</td>
<td>10</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>Emotional Well Being</td>
<td>12</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>Social Functioning</td>
<td>0</td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td>Pain</td>
<td>100</td>
<td>117</td>
<td>87</td>
</tr>
<tr>
<td>General Health</td>
<td>45</td>
<td>91</td>
<td>27</td>
</tr>
<tr>
<td>Health Change</td>
<td>25</td>
<td>78</td>
<td>7</td>
</tr>
</tbody>
</table>

As part of the Medical Outcomes Study (MOS)—a multi-year, multi-site study to explain variations in patient outcomes—RAND (www.rand.org) developed the 36-Item Medical Outcomes Survey (SF-36). SF-36 is a set of generic, coherent, and easily administered quality-of-life measures. These measures rely upon patient self-reporting and are now widely utilized by managed care organizations and by Medicare for routine monitoring and assessment of care outcomes in adult patients.

The Neuropsych Questionnaire Short Form asks patients (or an appropriate observer) a series of questions about their clinical state. The questions are about the symptoms of various neuropsychiatric disorders. The terminology is similar to that used in the diagnostic manuals, and in many familiar clinical questionnaires and rating scales; but it has been simplified, and all symptoms are scored on the same metric. Scores are reported on a scale of 0 (not a problem) to 300 (severe). As a rule, scores above 225 indicate a severe problem; scores from 150-224 indicate a moderate problem; and scores from 75-149, a mild problem. A high score on the Neuropsych Questionnaire Short Form means that the patient is reporting more symptoms of greater intensity. It doesn't necessarily mean that the patient has a particular condition; just that he or she (or their spouse, parent or caregiver) are saying that they have a lot of intense symptoms. Conversely, a low score simply means that the patient (or caregiver) is not reporting symptoms associated with a particular condition, at least during the period of time specified. It does not mean that the patient does not have the condition. Just as some people over-state their problems, others tend to under-state their problems. The Neuropsych Questionnaire Short Form is not a diagnostic instrument. The results it generates are only meant to be interpreted by an experienced clinician in the course of a clinical examination.
CNS Vital Signs: TBI and PTSD

Potential Clinical Presentation

PTSD
- Flashbacks
- Nightmares
- Attentional Problems
- Depression
- Anxiety
- Headaches
- Dizziness
- Irritability

TBI

ABSTRACT
Every year, more than 2M Americans sustain brain injuries and at least 10% are moderate to severe, with lasting motor or sensory deficits, cognitive impairment and emotional instability. The judicious application of psychotropic drugs and other somatic treatments has the potential to improve their cognitive deficits and neurobehavioral symptoms. Monitoring treatment response usually entails serial cognitive testing.

In 2008, we demonstrated the reliability and validity of a computerized neurocognitive test battery for the evaluation of patients who had the post concussion syndrome (PCS, N=13); who had recovered from mild brain injuries (MBI, N=15); who had had moderate-to-severe traumatic brain injuries (TBI1, N=85); and who had had severe and disabling TBI (TBI2, N=28) (Gualtieri & Johnson, A computerized test battery sensitive to mild and severe brain injury. The Medscape Journal of Medicine, 2008. Posted 04/15/08.) The Neurocognition Index, a summary scored based on tests of verbal and visual memory, finger tapping, coding, shifting attention, continuous performance and the Stroop test, demonstrated a graded level of cognitive performance relative to injury severity.

Measures of psychomotor speed (FTT & SDC) and cognitive flexibility (SAT & ST), and the NCI, were the best discriminators between normals and people who had had concussions.

Subjects, Method: This study involves 219 patients who had moderate to severe brain injuries but who were ambulatory and verbal, and independent in most of their activities of daily living; 121 patients with post-traumatic stress disorder; 98 patients who had the post-concussion syndrome; and 219 normal controls. The age of the Ss was 15 to 69. The four groups were successfully matched for age, race, gender and computer familiarity, but not for education (F=12.5, Sig < 0.001), which was accordingly entered as a covariate in the subsequent analyses.

Source: ISCTM 2009; NEUROCOGNITIVE EVALUATION OF PATIENTS WITH TRAUMATIC BRAIN INJURIES; C Thomas Gualtieri MD, Sandeep Vaishnavi MD PhD; North Carolina Neuropsychiatry Clinics, Chapel Hill, Charlotte & Raleigh
The 2008 study* utilized the conventional VS7 battery (verbal and visual memory, VBM, VIM), finger tapping (FTT), symbol digit coding (SDC), the Stroop test (ST), shifting attention (SAT) and the continuous performance test (CPT). In this study, an expanded test battery was used in a larger subject sample. This allows us to assess a wider range of variables as candidates for an optimal TBI battery. The conventional seven tests of the VS7 battery have been augmented with measures of reaction time variability for every test, and these, together, generate an RTV index. The conventional battery also generates new domains of executive function and processing speed. In addition, four new tests have been added to the battery: the perception of emotions test, which measures social acuity; tests of nonverbal reasoning and working memory; and a test of multitasking, the dual task test.

Results: The chart on the right indicates the results of the conventional VS7 battery, and the chart on the left, the expanded battery. The results are largely the same, with exceptions:

NORMALS > MBI > PTSD > TBI

<table>
<thead>
<tr>
<th>Test</th>
<th>AUC</th>
<th>Asymptotic Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCHOMOTOR SPEED ss</td>
<td>0.752</td>
<td>0.0170</td>
</tr>
<tr>
<td>NEUROCOGNITION INDEX ss</td>
<td>0.747</td>
<td>0.0192</td>
</tr>
<tr>
<td>COGNITIVE FLEXIBILITY ss</td>
<td>0.708</td>
<td>0.0485</td>
</tr>
<tr>
<td>COMPLEX ATTENTION ss</td>
<td>0.643</td>
<td>0.1761</td>
</tr>
<tr>
<td>MEMORY ss</td>
<td>0.620</td>
<td>0.2567</td>
</tr>
<tr>
<td>REACTION TIME ss</td>
<td>0.618</td>
<td>0.2644</td>
</tr>
</tbody>
</table>

NEUROCOGNITION INDEX

<table>
<thead>
<tr>
<th>Test</th>
<th>Area</th>
<th>Asymptotic Sig</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCHOMOTOR SPEED</td>
<td>0.846</td>
<td>1.86657E-09</td>
<td>1.18</td>
</tr>
<tr>
<td>REACTION TIME</td>
<td>0.820</td>
<td>2.75162E-08</td>
<td>1.03</td>
</tr>
<tr>
<td>DUAL TASK TEST</td>
<td>0.811</td>
<td>6.43318E-08</td>
<td>0.99</td>
</tr>
<tr>
<td>DUAL TASK %</td>
<td>0.796</td>
<td>2.64678E-07</td>
<td>0.82</td>
</tr>
<tr>
<td>EXECUTIVE FUNCTION</td>
<td>0.782</td>
<td>9.57359E-07</td>
<td>1.06</td>
</tr>
<tr>
<td>COGNITIVE FLEXIBILITY</td>
<td>0.775</td>
<td>1.71874E-06</td>
<td>1.02</td>
</tr>
<tr>
<td>DUAL TASK CORRECT</td>
<td>0.757</td>
<td>7.78578E-06</td>
<td>0.59</td>
</tr>
<tr>
<td>MEMORY</td>
<td>0.747</td>
<td>1.7412E-05</td>
<td>0.91</td>
</tr>
<tr>
<td>EXECUTIVE FUNCTION</td>
<td>0.707</td>
<td>0.00032257</td>
<td>0.60</td>
</tr>
<tr>
<td>WORKING MEMORY</td>
<td>0.700</td>
<td>0.000504357</td>
<td>0.64</td>
</tr>
<tr>
<td>SOCIAL ACUITY</td>
<td>0.700</td>
<td>0.00051113</td>
<td>0.56</td>
</tr>
<tr>
<td>REACTION TIME VARIABILITY</td>
<td>0.689</td>
<td>0.00102528</td>
<td>0.64</td>
</tr>
<tr>
<td>NONVERBAL REASONING</td>
<td>0.654</td>
<td>0.007503006</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Source: ISCTM 2009; NEUROCOGNITIVE EVALUATION OF PATIENTS WITH TRAUMATIC BRAIN INJURIES; C Thomas Gualtieri MD, Sandeep Vaishnavi MD PhD; North Carolina Neuropsychiatry Clinics, Chapel Hill, Charlotte & Raleigh
CNS Vital Signs: TBI and PTSD

NORMALS > MBI > PTSD > TBI

It is a moot point that severe TBI patients score lower than normals on neurocognitive tests, and that computerized tests are capable of demonstrating those differences. The issue that is of concern in recent days, especially in military medicine, is how one should neurocognitive testing to evaluate patients with mild brain injuries (MBI) and whether it is possible to distinguish them from patients PTSD. Theoretically, brain injury patients should score lower than patients with an anxiety disorder like PTSD. In fact, the opposite is the case. In almost every domain, PTSD patients score lower than MBI patients, and almost as badly as patients do who have had severe TBIs.

Source: ISCTM 2009; NEUROCOGNITIVE EVALUATION OF PATIENTS WITH TRAUMATIC BRAIN INJURIES; C Thomas Gualtieri MD, Sandeep Vaishnavi MD PhD; North Carolina Neuropsychiatry Clinics, Chapel Hill, Charlotte & Raleigh
CNS Vital Signs: TBI and PTSD

A NEUROCOGNITIVE BATTERY FOR MBI: Logistic regression indicates that a model including measures of reaction time, executive function, psychomotor speed, memory and multitasking (dual task test) correctly classify 93% of the subjects (compared to normals). An appropriate MBI battery, therefore, might include tests of verbal and visual memory, finger tapping and coding, shifting attention and the Stroop test, and the dual task test. All of these tests are appropriate, as well, for the evaluation of patients with severe TBI.

<table>
<thead>
<tr>
<th>NMLS v PTSD</th>
<th>Area</th>
<th>Asymptotic Sig</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYCHOMOTOR SPEED</td>
<td>0.787</td>
<td>0.0000</td>
<td>0.78</td>
</tr>
<tr>
<td>COGNITIVE FLEXIBILITY</td>
<td>0.730</td>
<td>0.0001</td>
<td>0.64</td>
</tr>
<tr>
<td>COMPLEX ATTENTION</td>
<td>0.729</td>
<td>0.0001</td>
<td>0.50</td>
</tr>
<tr>
<td>EXECUTIVE FUNCTION</td>
<td>0.729</td>
<td>0.0001</td>
<td>0.65</td>
</tr>
<tr>
<td>WORKING MEMORY</td>
<td>0.683</td>
<td>0.0017</td>
<td>0.62</td>
</tr>
<tr>
<td>DUAL TASK %</td>
<td>0.665</td>
<td>0.0047</td>
<td>0.56</td>
</tr>
<tr>
<td>DUAL TASK TEST</td>
<td>0.663</td>
<td>0.0052</td>
<td>0.52</td>
</tr>
<tr>
<td>MEMORY</td>
<td>0.646</td>
<td>0.0125</td>
<td>0.50</td>
</tr>
<tr>
<td>SOCIAL ACUITY</td>
<td>0.636</td>
<td>0.0196</td>
<td>0.46</td>
</tr>
<tr>
<td>REACTION TIME</td>
<td>0.626</td>
<td>0.0313</td>
<td>0.47</td>
</tr>
<tr>
<td>NONVERBAL REASONING</td>
<td>0.626</td>
<td>0.0313</td>
<td>0.45</td>
</tr>
<tr>
<td>DUAL TASK CORRECT</td>
<td>0.592</td>
<td>0.1164</td>
<td>0.35</td>
</tr>
<tr>
<td>REACTION TIME VARIABILITY</td>
<td>0.514</td>
<td>0.8154</td>
<td>0.35</td>
</tr>
</tbody>
</table>

When MBI patients are compared to PTSD patients, there are significant differences, for example in working memory, multitasking and social acuity, but the effect sizes are small.

Source: ISCTM 2009; NEUROCOGNITIVE EVALUATION OF PATIENTS WITH TRAUMATIC BRAIN INJURIES; C Thomas Gualtieri MD, Sandeep Vaishnavi MD PhD; North Carolina Neuropsychiatry Clinics, Chapel Hill, Charlotte & Raleigh
DRUG SENSITIVITY: TBI patients are often treated with psycho-stimulant drugs for cognitive problems including inattention and cognitive slowing. A subset of 32 TBI patients who had sustained moderate or severe TBI were administered a test dose of psycho-stimulant, methylphenidate 0.3 mgm/kgm (max, 20 mgm). The “test dose” paradigm has been described (Psychiatry2005, 2, 44-53, 2005). Improvement tends to be seen in most domains.

The areas where improvement was likeliest to seen are measures of impulsive responding, executive function, complex attention, psychomotor speed and reaction time variability.

CONCLUSIONS:
1. The same broad-spectrum neurocognitive battery can be used to assess patients with mild and severe TBI or PTSD.
2. An appropriate battery, therefore, might include tests of verbal and visual memory, finger tapping and coding, shifting attention and the Stroop test, and the dual task test. Tests of attention and working memory might also be included in a long battery. An abbreviated battery should include the finger tapping and shifting attention tests.
3. Patients with PTSD score lower than MBI patients on virtually all cognitive tests (save memory) and almost as poorly as patients who have had moderate-to-severe TBIs.
4. It is not possible to reliably distinguish between MBI and PTSD patients simply on the basis of neurocognitive testing at a point in time. One would expect the former to improve over time, however, while the latter may not.
The CNS Vital Signs ADHD neurocognitive testing procedure takes 15 to 45 minutes depending on the number of neurocognitive tests that are selected. The assessment platform collects objective data on the patients neurocognitive performance e.g., executive function, complex attention, cognitive flexibility, etc. The testing results are immediately auto-scored and presented in easy to read and interpret reports.

Key Advantage

A key advantage to the VSX assessment platform is the autoscoring of embedded indicators of patient testing effort. As with all psychological and neuropsychological testing neuropsychiatric patients can feign their responses due to incentives such as academic accommodations. When analyzing test data, either in research, or in clinical practice, it is important to know whether a test result is valid or not. Clinicians need to know if testing subjects are generating “dubious results” or a “non-credible response pattern.” CNS Vital Signs has developed “validity indicators” for its tests and domains that indicate whether the patient gave poor effort or generated invalid results. The Validity Indicator alerts the clinician to the possibility of an invalid test allowing the clinician, examiner or testing technician to question the testing subject: Do the testing results reflect an understanding of the test and the instructions? Did the testing subject put forth their best effort? Did they get a good night’s sleep? Does the subject have poor vision and need their glasses?

Should a subject test abnormally low triggering an “invalid” test (NO as displayed in the Validity Indicator section of the report) then that would be a reason for retesting the individual, unless your clinical judgment makes you believe that is the best score the patient can achieve. Like any suspicious lab, the test should be re-administered, and it can be done with CNS Vital Signs through the RETEST function. Before Retesting, the test examiner or technician should reinforce the need for the subject to give a good testing effort and use the “Validity Indicator” as a tool to help with the reinforcement. To RETEST a subject go to MENU > RETEST SUBJECT > and select the appropriate subject and retest the subject. Upon retest, should a subject test abnormally low again triggering yet another “invalid” test (NO as displayed in the Validity Indicator section of the report) and the clinician believes it was the patient’s best effort further evaluation or referrals should be considered.
The clinician generally integrates the VSX Test report with information from other in-take - assessment tools and the clinical evaluation to help guide the discussion on the level of impairment and the possible treatment strategies and plan. Longitudinal assessments can help tailor/optimize medications and track the patients condition and outcomes according to the chronic care model.

In-Take

The VSX TBI - Concussion Toolbox contains valid and reliable neurocognitive testing to rapidly assess individuals. These instruments can either be done remotely via CNSVS Online web-based assessment platform or in the clinic using a handheld e.g., iPad, Android or laptop computer.

NOTE: Brain and Behavioral Specialists – CNS Vital Signs supports the specialist “Team Management” or “Center of Excellence” practice strategy. This is a way for specialist to provide support services to brain injury care practices. The CNS Vital Signs platform helps enable a seamless continuum of care.

Neurocognitive Testing & TBI Rating Scales

The VSX TBI Toolbox/Test may be administered at the initial visit to help quantify the severity of deficits related to neurocognition. Objective neurocognitive testing data from the VSX report supplements information gathered through the CNS Vital Signs rating scales from parents, teachers and self-reports. The baseline VSX Test provides a foundation of objective information about the patients neurocognitive status and helps to guide the conversation about an individualized treatment plan and outcomes assessment.

Follow-up Testing

Clinicians can use the CNSVS Online web-based assessment platform to collect follow-up rating scales to track symptoms and behaviors. Clinicians can also run a series of CNS Vital Signs neurocognitive assessments to help tailor (maximize neurocognition while minimizing dosage) or inform medication management to achieve greater clinical efficacy. The CNS Vital Signs assessment platform is used to evaluate progress toward goals and to help guide treatment planning.
The Benefits of Computerized Assessment of Neurocognition

CONCLUSIONS: Beyond *ease of administration* and *data collection*, computer-based assessment offers benefits over paper-and-pencil measures in the *form of millisecond timing accuracy*, *reliable and randomized presentation of stimuli over multiple trials and repeat administrations*, and *unobtrusive measurement of cognitive skills and response times during all aspects of the assessment process.*

Journal of Head Trauma Rehabilitation 2002 Oct;17(5):395-410

Computerized neurocognitive assessments have increasingly received recognition for use in the research and clinical setting. The American Psychological Association-APA recognized the value of computerized psychological testing and published guidelines in 1987, to assist in the development and interpretation of computerized test results. The APA identified six major benefits of computerized assessment including: (1) automated data collection and storage, (2) greater efficiency of use, (3) release of the clinician from test administration to focus on treatment, (4) greater sense of mastery and control for the client, (5) reduced negative self-evaluation among clients that experience difficulty on the computer and (6) greater ability to measure aspects of performance not possible through traditional means, such as latency, strength and variability in response patterns.

Why Sports Concussion Management?

Second Impact Syndrome Case Study
E:60 explores Preston Plevretes' life after tragedy

- Public Health issue
- The Right Thing “To Do”
- State Legislation
- Athletic Mandates e.g. NCAA
- Tort Protection (Do You Have a PLAN? Did you Follow It?)

What is Needed?

- Valid & Reliable Tools
- Systematic Documentation
- Made Easier
- Made Affordable
Why Concussion Vital Signs?

- **Athlete Health:** Concussions are sometimes referred to as the invisible injury and are not always easy to assess (like a sprained ankle or broken bone). Returning-to-play to soon after a first concussion can have devastating consequences e.g. second impact syndrome. *Concussion Vital Signs provides scientifically Valid & Reliable tools that can help assess a athlete's status e.g., neurocognitive, symptoms, history, and sideline.*

- **New Advances:** Advancing medical knowledge has led to consensus guidelines supporting the proper management of sports related concussions (e.g., SCAT 2). *Concussion Vital Signs is optimized to assist every school and clinical practice in the longitudinal management of sports concussion.*

- **Risk Management:** Many state legislatures and sports governing bodies (e.g. NCAA) have passed mandates or guidelines related to the proper management of sports related concussions. *Concussion Vital Signs is optimized to assist every school and clinical practice in the compliance of sports concussion mandates, policies, and plans e.g. flexible and efficient assessment platform that enables a systematic documentation.*

- **The Right Thing To-Do:** “…the new program is integral to protecting athlete safety... the online test measures verbal, visual, memory and psycho-motor speed. There is also a 5-minute response test that measures how quickly athletes respond to stimuli. Every athlete is tested before their seasons begin to establish a baseline... We had a student who suffered a head injury this year... I went through the sideline test with them and they did fine. Later, they took the online test and it revealed that reaction times were seriously affected. Without the test, a doctor may have cleared the athlete to play again immediately. With the test, the athlete's health was protected.” Adapted from concussion article; Kansas ATC interview.

- **Affordable:** *Concussion Vital Signs Un-Limited Testing (Baselines and Post-Injury) is included with each years affordable subscription.*
About Concussion Vital Signs...

Designed with Expert Advice

We really like and prefer your tests...
The testing FLEXIBILITY makes it much more EFFICIENT!

We NEED a more AFFORDABLE TOOLSET!
The REPORTS are easy to UNDERSTAND!

We LIKE the FUNCTIONALITY! How it supports the current guidelines!

Powered by CNS Vital Signs Science
Helping to Assemble the Concussion Puzzle

Symptoms and History

Brain Function

Brain Structure

Balance Testing

Lab Values

Pocket SCAT2

The Pocket SCAT2 is a standardized method of evaluating injured athletes for concussion and can be used in athletes aged 10 years and older.

Concussion should be suspected in the presence of any or more of the following symptoms (such as headache), or physical signs (such as amnesia), or impaired brain function (e.g., confusion) or abnormal behavior.

Any athlete with a suspected concussion should be evaluated using Advanced Brain Path, MRI - CT Scan, and should not drive a motor vehicle.

Computerized Neuropsychological Tests e.g. Concussion Vital Signs

Paper and Pencil

Sideline Baseline /Post-Injury

Symptoms and History

Balance Testing

Lab Values

Solutions for Measuring, Monitoring, and Managing Neurocognitive and Behavioral Health
What is the Concussion Vital Signs Platform?

Student-Athlete Concussion Management

- **Process**
 - Pre-Participation or Pre-Season Exam & Activity
 - Concussion Education
 - Pre-Season Baseline Testing
 - Sideline and Post-Injury Assessment
 - Evaluation & Management of Concussed Athlete

- **Key**
 - Athletic Director
 - Athletic Trainer
 - Coaches
 - School Staff
 - Athletic Trainer
 - School Nurse
 - Coaches
 - School Staff
 - Parent Directed
 - Athletic Trainer
 - Team Physician
 - Coaches
 - Athletes (Observe Teammate Signs)
 - Parent
 - Teachers
 - School Nurse
 - Team Physician
 - Athletic Trainer
 - School Psychologist
 - Guidance Counselor

- **Enabler**
 - Team Physician
 - Sports Medicine
 - Neuropsychologist
 - Other Clinicians
 - CDC Programs
 - Team Physician
 - Sports Medicine
 - Neuropsychologist
 - Other Clinicians
 - Hospitals, etc.
 - Sports Medicine
 - Neuropsychologist
 - Other Clinicians
 - Hospitals, etc.
 - Parent
 - Athletic Trainer
 - Coach
 - School Nurse

Systematic Documentation of Relevant Clinical Endpoints to Help Make an Improved Return-to-Play Decision
Systematic Collection and Documentation of Relevant Clinical Endpoints

Pre-Season Baseline Testing
- Neurocognitive Evaluation
- Concussion History
- Concussion Symptom Scale
- Balance Testing

Sideline Assessment
- Pocket SCAT 2
- Emergency Procedures e.g., Call 911

Post-Injury Assessment
- Rest Brain Until Concussion Symptom Free Using Concussion Symptom Scale
- After Symptom Free with Graduated Exercise then Re-administer the Neurocognitive Test
- Update Concussion History
- Balance Testing

Pocket SCAT2

The Pocket SCAT2 is a standardized method of evaluating injured athletes for concussion and can be used in athletes aged from 10 years and older.

- Expected in the presence of following symptoms: physical signs such as headaches or neck stiffness and behavioral changes.
- Expected concussion should "STOP FROM PLAY" and seek care from a healthcare provider.

iPad, iPhone, Xoom, Droid, Blackberry Enabled
Concussion Vital Signs Test Report

Post-Concussion Example: Second Retest

Neurocognitive Index (NCI)

Verbal Memory

Visual Memory

Psychomotor Speed

Executive Functioning

Cognitive Flexibility

CPT Correct Responses

Reaction Time

Simple Reaction Time

Choice Reaction Time Correct

Shifting Attention Correct RT

Concussion Vital Signs Report

Report for SportConcussion

2. Post Injury 1: January 5, 2009
3. Post Injury 2: February 6, 2009
What is the Concussion Symptom Scale?

- Used in all Phases
- Graded (1-Mild to 6- Severe)
- CSI - Concussion Symptom Inventory
- SCAT 2
- Neurobehavioral Symptom Inventory
What is the Concussion History?

Demographic and Background Information - Education
- Years of Education Completed (e.g. high school senior is 11 years):
- SAT - ACT (total):
- Received Speech Therapy:
- Attended Special Education Classes:
- Repeated One or More Years of School:
- Diagnosed Attention Deficit Disorder (ADD) or (ADHD):
- Diagnosed Learning Disability:

Demographic and Background Information - Sports
- Primary Sport:
- Primary Sport Position:
- Years you have played this primary sport at current level:
- Total number of years you have played this primary sport:
- Secondary Sport:
- Secondary Sport Position:
- Years you have played this secondary sport at current level:
- Total number of years you have played this secondary sport:

Concussion & Medical History
- Number of times diagnosed with a concussion:
- Injury 1 (Up to 3 Injury’s can be reported)
- Approximate Date of Injury:
- Days Lost:
- Was this concussion sports related?
- Did this concussion result in a loss of consciousness?
- Did this concussion result in confusion?
- Difficulty remembering events immediately before injury?
- Difficulty remembering events immediately after injury?

Indicate whether you have experienced the following:
- Treatment for Headaches by Physician:
- Treatment for Migraine Headaches by Physician:
- Treatment for Epilepsy / Seizures:
- History of Brain Surgery:
- History of Meningitis:
- Treatment for Substance / Alcohol abuse:
- Treatment for Psychiatric Condition (depression / anxiety etc.):
- Current Medications:
NEXT STEPS:
Contact Us...

Getting Started

Step One: Register at www.CNSVS.com
After registering download the VSX ‘Brief-Core” Assessment Software with 5 FREE Test Sessions... Take it for a test drive.

Step Two: *Schedule a FREE One-on-One In-Service Webinar...* Contact CNS Vital Signs Support support@cnsvs.com with dates and times that you will be available.

After the webinar the total CNS Vital Signs Assessment platform (Web & Local) can be configured to meet your practice needs.

Learn More

Contact me to receive report examples, case studies, administration guides etc.

- **Website:** www.CNSVS.com
- **Phone:** 888.750.6941
- **Email:** support@cnsvs.com
- **Address:**
 598 Airport Blvd.
 Suite 1400
 Morrisville, NC 27560

“The webinar training was terrific... it covered the Validity & Reliability of the platform, the interpretation of results, billing and coding, testing protocol, and the integration of the CNS Vital Signs platform into our practice.” Practice Administrator